THERMAL CONDUCTIVITY OF BINARY DISORDERED
CONTINUOUS SOLID SOLUTIONS

Yu. P. Zarichnyak UDC 536.223

A simplified model for the structure and an approximate method of computing the thermal
conductivity of continuous solid golutions are proposed. The method is suitable for a
check, extension of the measurement results, and prediction of the thermal conductivity of
solid solutions.

Many elements (metals and nonmetals) and their chemical compounds (oxides, salts, carbides, ni-
trides, silicides, etc.) possess the capacity to form solid substitution solutions (unbounded golubility in the
solid state).

The concentration dependence of the thermal conductivity of disordered continuous solid solutions has
a characteristic peculiarity which is evidenced when comparing the composition—property diagram with the
phase diagram (solubility diagrams). It is known (Fig. 1) that the dependence of the thermal conductivity
of a continuous solid solution has a quite definite minimum at the 50% concentration of component atoms,
ions, or molecules, while a qualitatively distinct monotonic behavior of the concentration dependence is ob-
served in systems with practically insoluble components (mechanical mixtures). The presence of the mini-
mum at the 50% component concentration, established experimentally, is explained qualitatively in solid-
state theory by the distortions of the initial crystal lattice of the component A in the region surrounding the
atom or molecule of the impurity component B. Distortions of the crystal lattice are considered as defects
impeding heat transfer. The volume concentration of defects (distorted domains) of the initial component A
in the crystal lattice varies in proportion to the impurity content (i.e., the component B) and reaches a
maximum for an equal atomic or molar concentration of components, A further increase in the content of
the component B can be considered as an impurity diminution (the component A) in the initial crystal lattice
B, which will result in a growth of the thermal conductivity of the solid solution.

The complexity of a mathematical description of the heat-transport process in solid solutions and the
contradiction and incompletenesss of the information about the nature of the energy interaction between the
components explain the lack of reliable methods to compute the thermal conductivity in the solid state and
produce a need for carrying out complex and tedious experimental investigations. The error acceptable
in engineering computations (comparable to the measurement error) can be obtained, as a rule, by using
two empirical coefficients in the computational relations [1~3].

The tendency to shorten tedious measurements and to search for simplified methods of generaliza-
tion, interpolation, and extrapolation of experimental results explains the attempt to develop a combined
approach to the description of the thermal conductivity of continuous solid solutions which will combine the
fundamental representations of the molecular kinetic theory of the solid state with phenomenological {con-
tinual) models and methods of the theory of generalized conduction, tested on alloys with practically in~
soluble components in [4].

The lack of constraints, in principle, on the minimal size of a continuous medium in the theory of
generalized conduction permitted its successful utilization for an analytical description of the heat-trans-
port process in gas mixtures and liguid solutions, whose components can be mixed at the atomic or molec-
ular level 41,
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Fig. 1. Thermal conduc-
tivity —composition dia-
gram: 1) system with un-
limited solubility of the
components in the solid
state (continuous solid
solutions); 2) system with

components which are
practically insoluble in the

Let us consider the crystal lattice of any component, for example,
A, with impurities of atoms of the component B. Rejecting a discrete
image of the crystal lattice, let us congsider the domain of lattice distor-
tion around the impurity atom to be filled, just as is the rest of the undis-
torted lattice, by distinct continuous media (continuums) with different
values of the coefficient of thermal conductivity: AAB and Ay. The size of
the distorted region and the degree of change in the properties of the con-
tinuous medium which fills it depend on the nature of the components and
on their concentration.

Indeed, for a quite small impurity concentration, the size of the dis-
tortion domain can emerge outside the limits of the first coordination
sphere, including the nearest atoms of the initial lattice surrounding the
impurity atoms. An increase in the impurity concentration will result in
closure of the distorted domains and then to mutual overlapping. The dif-
ference between the properties (thermal conductivity) of a continuous me-
dium in the distortion zone from the properties of the initial components
is inversely proportional to the impurity concentration and becomes maxi-
mal at the atomic or molecular concentrations of the components xp = xp
= 50%. At this point the thermal conductivity of a solution solid is AB

solid state, xg in atomic %. = ABA = AMmin-

To simplify the subsequent analysis, let us consider (hypothesis 1)
the thermal conductivity of a continuous medium to be constant in the dis-
tortion zone of a crystal lattice and to equal App = const = Appjn. The hypothesis made permits considera-
tion of a solid solution of 50% concentration as a special continuous medium (the substance AB) with ther-
mal conductivity A og = Amin, which forms a mixture A + AB with the initial components at the concentra-
tions 0 < xB < 50% and a mixture AB + B for 50 < xg < 100%.

Furthermore, let us assume (hypothesis 2) that the thermal conductivity of a solid solution with xp
=Xg = 50% is known (has been measured, as for any individual substance, or has been determined theo-
retically).

If the hypotheses made do not contain contradictions, in principle, then the dependence of the thermal
conductivity of continuous solid solutions on both sides of the point x5 = xg = 50% should be monotonic in
character, which is in complete agreement with the whole set of experimental results (see Fig. 4) and is a
qualitative foundation for the consistency of the hypotheses made. Further difficulties are thereby trans-
ferred to the method of determining the size of the distorted zone of the crystal lattice or (from the phenom-
enological viewpoint)to the determinination of the volume concentration of the component AB with the ther-
mal conductivity Apapg = Apin-

It is known that continuous solid substitution solutions form components with an identical kind of
crystal lattice and very close atomic volumes (the difference is less than 15%). This latter permits con-
sidering the specific volumes per atom of the initial component and the impurity approximately equal. In
such a case, the size (volume) of the distortion zone is expressed conveniently by a quantity which is a
multiple of the coordination number N(x), i.e., the number of atoms (ions or molecules) of the initial com-
ponent per atom of impurity. If xa = xp = 50%, then

N () = N gy =1 M

and is independent of the kind of crystal lattice.

Let us estimate the upper limit value lim N{x) of the number of atoms of the initial component per
atom of impurity in different crystal lattices. If it is assumed in conformity with [5, 6] that the funda-
mental energy interaction between atoms at the sites of the crystal lattice occurs with the nearest neighbor
atoms in the first coordination sphere, then the kind of lattice determines limN(x) uniquely (Fig. 2).

Two important peculiarities exposed in the analysis of Fig. 2 should be noted: The limit values lim Nx)
are independent of the kind of lattice; from physical considerations (the finite size of the distortion zone),
the growth of the function N(x) with the diminution of the impurity concentration should be bounded by cer-
tain maximum values for any kind of lattice, i.e., 1 = N(x) = Np54.
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Fig. 2. Derivation of the dependence N(x): 1, 2) maximum and mini-
mum limit values of the coordination number N(x); 3) arithmetic
mean (of the minimum and maximum limit) value of N(x); 4) kind of
"smooth" function N(x) which satisfies conditions (1)-(5); 5) piece-
wise-linear approximation of N(x); 6, 7, 8, 9) values of N(x) for crys-
tal lattices of diamond, simplest cubic, body-centered- and face-cen-
tered-cubic types, x in %.

Fig. 3. Nomogram for computation of the thermal conductivity of con-
tinuous solid solutions, xg in atomic %.

The maximum value bounded by the first coordination sphere can vary between 4 and 12 depending on
the kind of lattice.

In a first approximation it can be assumed that Npyax = 6 (simplest cubic lattice), which thereby con-
strains the range of possible values of the function N(x) within the following limits:

1.=N(¥)= 6. 2)

Since the true form of the function N(x) is not determined by a priori considerations, there remains to
seek it by either a sampling method or by taking account of the additional conditions which sharply contract
the practically unbounded combinatorics of "suitable functions."

The problem of searching for the form of the function N(x) recalls, somewhat, the analogous problem
of determining the approximate form of the even potential of intramolecular interaction in kinetic theory,
where the form of the potential is specified by qualitative considerations, and its parameters are sought
from a comparison between theoretical values and the results of measuring the transport coefficients or the
state parameters. It is expedient to constrain the combinatorics of the possible functiong by the imposition
of a number of necessary conditiong which the desired function should satisfy.

The finite size of the distortion zone for a low impurity concentration can be expressed by the condi-
tion

when x—0 M = 0. (3)
dx
According to the theory of generalized conduction, the condition
when x> 509 and hag = ha, hg i’;i(i‘l. 0 4)
X

should be satisfied for a mixture of continuous media with different thermal conductivities. As is often
done in a first approximation, we assume for the intermediate concentrations 0 = xp = 50% that the mag-
nitude of the desired function N(x) will be close to some mean (for example, the arithmetic mean) between
the upper limit (for a given impurity concentration) and the minimum values, i.e.,

Nmin-+ HIm N (x)

for' 0<Cx<C509% N = 5

()
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Fig. 4. Comparison between results of a compu-
tation and experimental results. Curves are from
the computation. Experiment: 1) Ag—Au; 2) Pt
—Pd; 3) Cu—Ni; 4) Pd—Ag (all for T =273°K [7]);
5) W—Mo, T = 1200°K; 6) W—Mo; T = 2600°K [9];
'7) HgSe—HgTe; 8) Ge—Si; 9) In,—GaAs; 10) PbTe
—PbSe; 11) Mg,Si— Mg,Sn; 12) Mg,Ge—Mg,Sn; 13)
Ga,Se; —Ga,Te,; 14) BiyTe;~BiySe; (all for T
=300°K 1, 2, 3]); 15) UO,—Pu0,, T =300°K [8];
16) ZrC—ZrN, T = 300°K [10]; 17) TiC—HIC; 18)
ZrC—HiC; 19) NoC —HIC, T = 300°K [10]; 20)
ZrCqy 55—~ NoCy, 5. T = 1673°K; 21) the same for

T = 2673°K [11]; 22) ZrCy, 59— ZrNy 5, [13]; 23)
MosSi, —ReSi, [12]; T = 300°K; graph a is in atomic
‘%; graphs b, c, d, e, f~ xp are in molecular %,

The form of the function N(x) satisfying the
requirements (1)-(5) listed above is represented by
curve 4 in Fig. 2. The approximate "smooth" func-
tion can be selected as a polynomial (curve 4 in
Fig. 2)

N(x) =~ 6 — 3.318-1072%2 -1.2,337. 107343
— 7.743.107%%1 1 1.229.1076,5 — 7.639. 107%s, (6)
whose numerical coefficients are determined by the
boundary conditions (1)-(5) or by a simplified piece-
wigse-linear approximation (the broken line 5 in
Fig. 2):
0<x 3%, N(x)=6;

3Cx<25%, NXx)=6— (x —3); 7)

95. < x < 50%, N(x)~2— 004 (x — 25).

By knowing the number of atoms (ions or mole~
cules) of the initial component per impurity atom
N(x), an expression for the volume concentration
map of the distorted zones in the crystal lattice, as
though filled by a continuous medium with the ther-
mal conductivity AAp = Amin, can be obtained
easily:

Map = 0.0 [1+ N0, 0<m,,<10. (8)

The chaotic structure of a two-component mix-
ture of -continuous media (the initial component and
the distortion zones) and its corresponding ordered
model for the computation of the thermal conductivity

are determined by the impurity concentration. For a low impurity content (less than three atomic or molec-
ular percent) the volume concentration of the distorted regiong (8) is mpp < 0.2 and the regions themselves
are isolated, as a rule. The effective thermal conductivity of a system whose distorted domains are mod-
eled in the form of impregnations which are not in contact in a continuous medium can be computed by

means of the Eiken—OQOdelevskii formula [5]:

D= s (1- 1

1—v

__ kmin . @)

l—mypg ), v Aa

3

As the impurity content grows (x > 3%) the distortion zones in the crystal lattice converge and enter
into contact [2] to form a chaotic spatial system with interpenetrating components. The effective thermal
conductivity of an ordered structure with interpenetrating components can be computed by means of the

Dul'nev formula [6]

A=1a {c2+v'(1—c)2+

2v'e (1—¢)
viet+1—c¢

J' y = Jmin_ (10)

}\.A

where ¢ = f(mp g) is a geometric parameter of the ordered model [6], related uniquely to the volume con-
centration of the distortion zones map by means of the cubic equation

2 — 3+ 1L =m,,, (11)

whose. solution (first root) is

¢=0.5+acos ‘; , 270 9 < 360°, 0<m,, <05 a=1"¢

= arc cos (1—2m,z), 0.5\<AmAB\-\fl.0 a=—1 @=arccos(@m,,—1).
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Thug, the computation of the thermal conductivity of continuous solid solutions can be performed as
follows.

By means of the known (test} values of the thermal conductivity Ay, i of 2 solid solution of 50 atomic
or molecular %, and one of the initial components, Aa, for example, we find the ratio v' = "min/AA and then
we calculate the volume concentration of the distortion zones mAp in fractions of one by means of (6)-(8).
Furthermore, depending on the impurity concentration, we determine the desired thermal conduectivity of
the solid solution with appropriate impurity concentration 0 < xp < 50% by meang of (11) and (10) or (9).

The computation in the 50 < xg < 100% range is executed in an analogous manner with the replace~
ment of the subscript of the components, i.e., v' = )\min/}\B is calculated, mpa = f(xa} is determined by
means of (6)-(8), and then the desired magnitude of the effective thermal conductivity A = f(AB, mpa) is
found from (9) or (10).

The computation is simplified substantially when a nomogram (Fig. 3} constructed by means of the
scheme elucidated above is used.

EXAMPLE OF A COMPUTATION

Let us assume that the components A(A4 =100 W/m -K) and B form a continuous solid solution. The
thermal conductivity of the alloy is known for xp = xg = 50%, AAB = Apin = 10 W/m -K. Calculate the ther-
mal conductivity of the solid solution with concentration xg = 13 atomic %.

We find v' = 10/100 = 0.1, All the desired values of the thermal conductivity of solid solutions in the
domain 0 < xp < 50% lie on the curve v' = 0.1. The relative thermal conductivity of a solution of the de-~
sired composition is determined by the intersection of the v' = 0.1 curve with a perpendicular erected on
the horizontal axis at the point xp = 13% (point 1in Fig, 3)and equal to A/Ag = 0.3 (point 2 in Fig. 3). The ab-
solute desired value of the thermal conductivity of the solid solution (xg = 13%) is A =0.3 -100 = 30 W/m-K.

If the thermal conductivity of the solid solution Ay = Apin is unknown, then it can be determined by
using the same nomogram for another known value of the thermal cornductivity of a solid solution of the
composgition 0 < xp < 50%. For example, by knowing that Xp= 22% A = 54 W/m -K for xg = 22%, we find the
intersection of perpendiculars erected at xp = 22% on the horizontal axis and for MAy = 54/100 = 0.54 on the
vertical axig {(point 3 in Fig. 3). All the remaining values of the thermal conductivity of solid solutions of
the system under consideration will be on the dashed-dot curve passing through point 3 and the correspond-
ing value of v' = 0.43 or Apip = 43 Wm -K (4).

A quantitative confirmation of the validity of the reasoning elucidated and of the method proposed for
determining the thermal conductivity of continuous solid solutions was performed by comparing the com-~
puted and experimental values of the thermal conductivity of more than 30 binary systems of solid solutions
of elements and chemical compounds (Fig. 4).

Despite the substantial differences in the nature of the components (metals, semiconductors, oxides,
carbides, nitrides, silicides) and in the character of the thermal-energy carriers (electrons, phonons, com-
bined transfer), not only the qualitative behavior of the concentration dependence of the thermal conduc~
tivity, but also the numerical results, agree completely in all the solid solutions considered. The shape of
the discrepancy histograms of the computed and measured values of the thermal conductivity is almost a
normal distribution curve. The root-mean-square discrepancy of the results of the computation and the
experimental data for 150 points, which was about 10%, does not emerge outside the limits of the scatter
zone for the experimental data obtained by different researchers for the same alloy, and is commensurate
with the error in measuring the thermal conductivity [1, 8, 9-13]. No systematic discrepancies were de-
tected in the whole range of component concentrations.
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