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A simplified model for the structure and an approximate method of computing the thermal 
conductivity of continuous solid solutions are proposed. The method is suitable for a 
check, extension of the measurement results, and prediction of the thermal conductivity of 
solid solutions. 

Many elements (metals and nonmetals) aad their chemical compounds (oxides, salts, carbides, hi- 
irides, silicides, etc.) possess the capacity to form solid substitution solutions (unbounded solubility in the 
solid state). 

The concentration dependence of the thermal conductivity of disordered continuous solid solutions has 
a characteristic peculiarity which is evidenced when comparing the composition-property diagram with the 
phase diagram (solubility diagrams). It is known (Fig. 1) that the dependence of the thermal conductivity 
of a continuous solid solution has a quite definite minimum at the 50% concentration of component atoms, 
ions, or molecules, while a qualitatively distinct monotonic behavior of the concentration dependence is ob- 
served in systems with practically insoluble components (mechanical mixtures). The presence of the mini- 
mum at the 50% component concentration, established experimentally, is explained qualitatively in solid- 
state theory by the distortions of the initial crystal lattice of the component A in the region surrounding the 
atom or molecule of the impurity component B. Distortions of the crystal lattice are considered as defects 
impeding heat transfer. The volume concentration of defects (distorted domains) of the initial component A 
in the crystal lattice varies in proportion to the impurity content (i.e., the component B) and reaches a 
maximum for an equal atomic or molar concentration of components. A further increase in the content of 
the component B can be considered as an impurity diminution (the component A) in the initial crystal lattice 
B, which will result in a growth of the thermal conductivity of the solid solution. 

The complexity of a mathematical description of the heat-transport process in solid solutions and the 
contradiction and incompletenesss of the information about the nature of the energy interaction between the 
components explain the lack of reliable methods to compute the thermal conductivity in the solid state and 
produce a need for carrying out complex and tedious experimental investigations. The error acceptable 
in engineering computations (comparable to the measurement error) can be obtained, as a rule, by using 
two empirical coefficients in the computational relations [1-3]. 

The tendency to shorten tedious measurements and to search for simplified methods of generaliza- 
tion, interpolation, and extrapolation of experimental results explains the attempt to develop a combined 
approach to the description of the thermal conductivity of continuous solid solutions which will combine the 
fundamental representations of the molecular kinetic theory of the solid state with phenomenologieal (con- 
tinual) models and methods of the theory of generalized conduction, tested on alloys with practically in- 
soluble components in [4]. 

The lack of constraints, in principle, on the minimal size of a continuous medium in the theory of 
generalized conduction permitted its successful utilization for an analytical description of the heat-trans- 
port process in gas mixtures and liquid solutions, whose components can be mixed at the atomic or molec- 
ular level [4]. 
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Fig .  1. The rma l  conduc-  
t i v i t y -  composi t ion  d i a -  
g ram:  1) sys tem with un- 
l imi ted  so lubi l i ty  of the 
components  in the sol id  
s ta te  (continuous so l id  
solut ions) ;  2) sy s t em with 
components  which a r e  
p r a c t i c a l l y  insoluble  in the 
so l id  s t a te ,  x B in atomic %. 

Let  us cons ide r  the c r y s t a l  l a t t i ce  of any component,  for  example ,  
A, with im pur i t i e s  of a toms  of the component  B. Reject ing a d i s c r e t e  
image of the c r y s t a l  l a t t i ce ,  le t  us c o n s i d e r  the domain of la t t ice  d i s t o r -  
t ion around the impur i ty  atom to be f i l led ,  jus t  as  is the r e s t  of the undis -  
tor ted  l a t t i ce ,  by d i s t inc t  continuous media  (continuums) with d i f fe ren t  
va lue s  of the coeff ic ient  of t he r m a l  conductivi ty:  hAB and h A. The s ize  of 
the d i s t o r t ed  region  and the degree  of change in the p r o p e r t i e s  of the con-  
tinuous medium which f i l l s  it depend on the nature  of the components  and 
on the i r  concent ra t ion .  

Indeed, fo r  a quite s m a l l  impur i ty  concent ra t ion ,  the s ize  of the d i s -  
tor t ion  domain  can e m e r g e  outside the l im i t s  of the f i r s t  coordinat ion  
sphe re ,  including the n e a r e s t  a toms of the ini t ia l  l a t t i ce  surrounding the 
impur i ty  a toms .  An i n c r e a s e  in the impur i ty  concent ra t ion  will  r e su l t  in 
c lo su re  of the d i s to r t ed  domains  and then to mutual over lapping .  The d i f -  
f e rence  between the p r o p e r t i e s  ( thermal  conductivity) of a continuous m e -  
dium in the d i s to r t ion  zone f rom the p r o p e r t i e s  of the ini t ia l  components  
is i n v e r s e l y  p ropor t iona l  to the impur i ty  concen t ra t ion  and becomes max i -  
mal  at  the a tomic  or  m o l e c u l a r  concen t ra t ions  of the components  x A = x B 
= 50%. At this  point the t he r m a l  conduct ivi ty  of a solut ion solid is XAB 

= XBA = kmi n- 

To s impl i fy  the subsequent  a n a l y s i s ,  le t  us c o n s i d e r  (hypothesis  1) 
the t he rma l  conduct ivi ty of a continuous medium to be constant  in the d i s -  

tor t ion  zone of a c r y s t a l  l a t t i ce  and to equal  hAB = const  = kmi n. The hypothes is  made p e r m i t s  c o n s i d e r a -  
tion of a sol id  solut ion of 50% concent ra t ion  as  a spec ia l  continuous medium (the subs tance  AB) with t h e r -  
mal  conduct ivi ty  kAB = ~'min, which fo rms  a mix ture  A + AB with the in i t ia l  components  a t  the concen t r a -  
t ions 0 < XB < 50% and a mix ture  AB + B for 50 < x B < 100%. 

F u r t h e r m o r e ,  le t  us a s s u m e  (hypothesis  2) that  the t he rma l  conduct ivi ty  of a sol id solut ion with x A 
= x B = 50% is  known (has been m e a s u r e d ,  as  for any individual subs tance ,  o r  has been de te rmined  theo- 
r e t i ca l ly ) .  

If the hypotheses  made do not contain con t rad ic t ions ,  in p r inc ip le ,  then the dependence of the the rmal  
conduct ivi ty  of continuous sol id  solu t ions  on both s ides  of the point x A = x B = 50% should be monotonic in 
c h a r a c t e r ,  which is  in comple te  a g r e e m e n t  with the whole se t  of expe r imen ta l  r e s u l t s  (see Fig .  4) and is a 
qua l i t a t ive  foundation for  the  cons i s t ency  of the hypotheses  made.  F u r t h e r  d i f f icu l t ies  a r e  thereby  t r a n s -  
f e r r e d  to the method of de te rmin ing  the s ize  of the d i s to r t ed  zone of the c r y s t a l  la t t ice  or  (from the phenom- 
enologica l  Viewpoint)to the d e t e r m i n i n a t i o n o f  the volume concent ra t ion  of the component AB with the t h e r -  

mal  conduct ivi ty  kAB = kmi n. 

It is  known that continuous solid subst i tu t ion solut ions  form components  with an ident ical  kind of 
c r y s t a l  l a t t i ce  and v e r y  c lose  a tomic  vo lumes  (the d i f fe rence  is l e s s  than 15%). This  l a t t e r  p e r m i t s  con- 
s i d e r i n g  the speci f ic  volumes per  atom of the in i t ia l  component  and the impur i ty  approx ima te ly  equal .  In 
such a case ,  the s ize  (volume) of the d i s t o r t i on  zone is e x p r e s s e d  convenient ly  by a quantity which is a 
mul t ip le  of the coordinat ion  number  N(x), i .e . ,  the number  of a toms  (ions o r  molecules )  of the ini t ia l  com-  

ponent pe r  atom of impur i ty .  If x A = x B = 50%, then 

N (x) = N m i  n = 1 (1) 

and is independent of the kind of c r y s t a l  l a t t i ce .  

Let  us e s t ima te  the upper  l i m i t  value  l im N(x) of the number  of a toms of the ini t ia l  component  pe r  
atom of impur i t y  in d i f fe ren t  c r y s t a l  l a t t i c e s .  If it is a s sumed  in conformi ty  with [5, 6] that  the funda- 
menta l  ene rgy  in te rac t ion  between a toms  at  the s i t es  of the c r y s t a l  l a t t i ce  occur s  with the ne a r e s t  neighbor 
a toms in the f i r s t  coordinat ion  sphe re ,  then the kind of l a t t i ce  d e t e r m i n e s  1iroN(x) uniquely (Fig.  2). 

Two impor tan t  p e c u l i a r i t i e s  exposed in the ana lys i s  of F ig .  2 should be noted: The l imi t  values  t im N(x) 
a r e  independent of the kind of la t t ice ;  f rom phys ica l  cons ide ra t i ons  (the finite s ize  of the d i s to r t ion  zone), 
the growth of the function N(x) with the diminut ion of the impur i ty  concent ra t ion  should be bounded by c e r -  
tain max imum va lues  for  any kind of l a t t i ce ,  i .e . ,  1 -<- N(x) -< Nma x. 
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Derivation of the dependence N(x): I ,  2) maximum and mini- 
mum l i m i t  v a l u e s  of the  c o o r d i n a t i o n  n u m b e r  N(x); 3) a r i t h m e t i c  
m e a n  (of the  m i n i m u m  and m a x i m u m  l imi t )  va lue  of N(x); 4) kind of 
" s m o o t h "  funct ion  N(x) which s a t i s f i e s  c ond i t i ons  (1)-(5);  5) p i e c e -  
w i s e - l i n e a r  a p p r o x i m a t i o n  of N(x); 6, 7, 8, 9) v a l u e s  of N(x) f o r  c r y s -  
t a l  l a t t i c e s  of d i a m o n d ,  s i m p l e s t  cub i c ,  b o d y - c e n t e r e d -  and f a c e - t e n -  
t e r e d - c u b i c  t y p e s ,  x in %. 

F ig .  3. Nomogra rn  for  c o m p u t a t i o n  of the  t h e r m a l  c o n d u c t i v i t y  of c o n -  
t inuous  so l id  s o l u t i o n s ,  x B in a t o m i c  %. 

The m a x i m u m  va lue  bounded by the f i r s t  c o o r d i n a t i o n  s p h e r e  can v a r y  be tw e e n  4 and 12 depend ing  on 
the kind of l a t t i c e ,  

In a f i r s t  a p p r o x i m a t i o n  it can be a s s u m e d  tha t  Nma x = 6 ( s i m p l e s t  cub ic  l a t t i c e ) ,  wMeh t h e r e b y  c o n -  
s t r a i n s  the  r a n g e  of p o s s i b l e  v a l u e s  of the funct ion  N(x) wi th in  the fo l lowing  l i m i t s :  

1 z N(x)_< 61 (2) 

Since the true form of the function N(x) is not determined by a priori considerations, there remains to 
seek it by either a sampling method or by taking account of the additional conditions which sharply contract 
the practically unbounded combinatorics of "suitable functions." 

The problem of searching for the form of the function N(x) recalls, somewhat, the analogous problem 
of determining the approximate form of the even potential of intramolecular interaction in kinetic theory, 
where the form of the potential is specified by qualitative considerations, and its parameters are sought 
from a comparison between theoretical values and the results of measuring the transport coefficients or the 
state parameters. It is expedient to constrain the combinatorics of the possible functions by the imposition 
of a number of necessary conditions which the desired function should satisfy. 

The finite size of the distortion zone for a low impurity concentration can be expressed by the condi- 
tion 

when x--* O dN (x) O. (3) 
dx 

A c c o r d i n g  to the  t h e o r y  of g e n e r a l i z e d  conduc t ion ,  the cond i t i on  

when x--~-50% and ~..4B =~.x ,  ~.B dk(x) =/=0 (4) 
dx 

shou ld  be s a t i s f i e d  fo r  a m i x t u r e  of con t inuous  m e d i a  with d i f f e r e n t  t h e r m a l  e o n d u e t i v i t i e s .  As is of ten 
done in a f i r s t  a p p r o x i m a t i o n ,  we a s s u m e  fo r  the  i n t e r m e d i a t e  c o n c e n t r a t i o n s  0 -< x B -< 50% tha t  the  m a g -  
n i tude  of the d e s i r e d  funct ion  N(x) wi l l  be c l o s e  to some  m e a n  (for e x a m p l e ,  the  a r i t h m e t i c  mean)  be tween  
the u p p e r  l i m i t  (for a g iven  i m p u r i t y  c o n c e n t r a t i o n )  and the  m i n i m u m  v a l u e s ,  i . e . ,  

Nmin@ lim N (x) for 0 < x < 5 0 %  N(x)~.-~. (5) 
2 
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Fig. 4. Comparison between resul ts  of a compu-  
tation and experimental  resul ts .  Curves are  f rom 
the computation. Experiment:  1) A g - A u ;  2) Pt  
- P d ;  3) C u - N i ;  4) P d - A g  (all for T = 273~ [7]); 
5) W-Mo,  T = 1200~ 6) W - M o ;  T = 2600~ [9]; 
7) HgSe-HgTe;  8) Ge-S i ;  9) In2-GaAs; 10) PbTe 
- P b S e ;  11) Mg2Si-Mg2Sn; 12) Mg2Ge-MgxSn; 13) 
Ga2Se3-Ga2T%; 14) Bi2Te3-Bi2S % (all for T 
= 300~ [1, 2, 3]); 15) UO2-PuO2, T = 300~ [8]; 
16) Z r C - Z r N ,  T = 300~ [10]; 17) T i C - H f C ;  18) 
Z r C - H f C ;  19) NbC-HfC,  T = 300~ [10]; 20) 
ZrC0.z55-NbC0.75, T = 1673~ 21) the same for  
T = 2673~ [11]; 22) ZrC0.gz-ZrN0.82 [13]; 23) 
MoSi2-ReSi 2 [12]; T = 300~ graph a is in atomic 

The form of the function N(x) satisfying the 
requirements  (1)-(5) listed above is represented by 
curve 4 in Fig. 2. The approximate "smooth" func- 
tion can be selected as a polynomial (curve 4 in 
Fig. 2) 

N(x) ,.~ 6 --  3.318.10-2x 2 +2,337.10-~x 3 

- 7.743.10-Sxa+ 1.229.10-nx ~ - -  7.639.10-"x n, (6) 

whose numerical  coefficients are  determined by the 
boundary conditions (1)-(5) o r  by a simplified piece-  
wise - l inear  approximation (the broken line 5 in 
Fig. 2): 

0 ~ x ~ 3 % ,  N(x)=6; 

2 
3 ~ x - ~ . . 2 5 % ,  m(x)~_.6-- 1--~- (x--3); (7) 

25~5x.~ 50%, N(x)~-~2--O.04 (x--25). 

By knowing the number of atoms (ions or mole-  
cules) of the initial component per impurity atom 
N(x), an express ion for the volume concentration 
mAB of the dis tor ted zones in the crys ta l  lattice, as 
though filled by a continuous medium with the the r -  
mal conductivity kAB = kmin, can be obtained 
easily:  

mAB=O.OI[I+N(x)] , 0 .~ mAB .~ 1.0" (8) 

The chaotic s t ruc ture  of a two-component mix- 
ture of continuous media (the initial component and 

%; graphs b, c, d, e, f -  x B are  in molecular  %. 
the distort ion zones) and its corresponding ordered 
model for  the computation of the thermal  conductivity 

are  determined by the impurity concentrat ion.  For  a low impuri ty content (less than three atomic or  molec-  
ular  percent) the volume concentrat ion of the dis tor ted regions (8) is mAB < 0.2 and the regions themselves  
are  isolated,  as a rule. The effective thermal  conductivity of a sys tem whose distorted domains are  mod- 
eled in the form of impregnations which are  not in contact  in a continuous medium can be computed by 
means of the E iken-Odelevsk i i  formula  [5]: 

( rnAB ) ,  v, ~'min 
X : ~'A 1-- 1 1 - -  I"rlAB ~'A (9) 

1 - - v '  3 

As the impurity content grows (x > 3%) the dis tor t ion zones in the c rys ta l  lattice converge and enter  
into contact  [2] to form a chaotic spatial sys tem with interpenetrat ing components.  The effective thermal  
conductivity of an ordered s t ruc ture  with interpenetrat ing components can be computed by means of the 
Dul'nev formula  [6 ] 

~''---'-~'A [ c ~ + v ' ( I - c ) 2 +  V'C2V'C(1--C)+ t --C ] ' v ' -  )~min'~A ' (1O) 

where c = f(mAB) is a geometr ic  pa rame te r  of the ordered model [6], related uniquely to the volume con- 
centrat ion of the distort ion zones mAB by means of the cubic equation 

2c8~3cZ+ 1 ----mAe, (11) 

whose  solution (first root) is 

c = 0 . 5 + a c o s  ~ , 270.<. ~ .~  3600 , 0 -~mA~<0 .5  a-~l  "(9 
3 

_-- arc cos (1--2mAB), 0.5~<mAB<<I.0 a-------1 w = arc cos (2mAB --1). 
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Thus, the computation of the thermal conductivity of continuous solid solutions can be performed as 
follows. 

By means of the known (test) values of the thermal conductivity ~nin of a solid solution of 50 atomic 
or molecular %, and one of the initial components, ;~A, for example, we find the ratio u' = kmin/X A and then 
we calculate the volume concentration of the distortion zones mAB in fractions of one by means of (6)-(8). 
Furthermore, depending on the impurity concentration, we determine the desired thermal conductivity of 
the solid solution with appropriate impurity concentration 0 < x B < 50% by means of (11) and (10) or (9). 

The computation in the 50 < x B < 100% range is executed in an analogous manner with the replace- 
ment of the subscript of the components, i.e., ~' = kmin/~. B is calculated, tuBA = f(xA) is determined by 
means of (6)-(8), and then the desired magnitude of the effective thermal conductivity k = f(kB, tuBA ) is 
found from (9) or (10). 

The computation is simplified substantially when a nomogram (Fig. 3) constructed by means of the 
scheme elucidated above is used. 

E X A M P L E  O F  A C O M P U T A T I O N  

L e t  us a s s u m e  tha t  the  c o m p o n e n t s  A(k A = 100 W/m �9 K) and B f o r m  a con t inuous  s o l i d  so lu t i on .  The 
t h e r m a l  c o n d u c t i v i t y  of the a l l o y  is known for  x A = x B = 500/0, kAB = h m i n =  10 W / m  -K. C a l c u l a t e  the t h e r -  
m a l  conductivity of the solid solution with concentration x B = 13 atomic %. 

We find ~;' = 10/100 = 0.1. All the desired values of the thermal conductivity of solid solutions in the 
domain 0 < x B < 50% lie on the curve ~,' = 0.1. The relative thermal conductivity of a solution of the de- 
sired composition is determined by the intersection of the u' = 0.1 curve with a perpendicular erected on 
the horizontal axis at the point x B = 13% (point I in Fig. 3)and equal to k/~-A = 0.3 (point 2 in Fig. 3). The ab- 
solute desired value of the thermal conductivity of the solid solution (x B = 13%) is k = 0.3 -100 = 30 W/m-K. 

If the thermal conductivity of the solid solution lAB = lmin is unknown, then it can be determined by 
using the same nomogram for another known value of the thermal conductivity of a solid solution of the 
composition 0 < x B < 50%. For example, by knowing that XB= 22% ~ = 54 W/m .K for x B = 22%, we find the 
intersection of perpendiculars erected at x B = 22~o on the horizontal axis and for k/h A = 54/100 = 0.54 on the 
vertical axis (point 3 in Fig. 3). All the remaining values of the thermal conductivity of solid solutions of 
the system under consideration will be on the dashed-dot curve passing through point 3 and the correspond- 
ing value of u' = 0.43 or kmi n = 43 W/m -K (4). 

A quantitative confirmation of the validity of the reasoning elucidated and of the method proposed for 
determining the thermal conductivity of continuous solid solutions was performed by comparing the com- 
puted and experimental values of the thermal conductivity of more than 30 binary systems of solid solutions 
of elements and chemical compounds (Fig. 4). 

Despite the substantial differences in the nature of the components (metals, semiconductors, oxides, 
carbides, nitrides, silicides) and in the character of the thermal-energy carr iers  (electrons, phonons, com- 
bined transfer), not only the qualitative behavior of the concentration dependence of the thermal conduc- 
tivity, but also the numerical results, agree completely in all the solid solutions considered. The shape of 
the discrepancy histograms of the computed and measured values of the thermal conductivity is almost a 
normal distribution curve. The root-mean-square discrepancy of the results of the computation and the 
experimental data for 150 points, which was about 10~o, does not emerge outside the limits of the scatter 
zone for the experimental data obtained by different researchers for the same alloy, and is commensurate 
with the er ror  in measuring the thermal conductivity [i, 8, 9-13]. No systematic discrepancies were de- 
tected in the whole range of component concentrations. 
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